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Fig. 1. A selection of animated characters created using Monster Mash by animators who participated in our informal user study. For each example, the
original hand-drawn outlines are visible in the inset above (superimposed over the original drawing or a source photo). From these outlines, Monster Mash can
inflate a smooth, consistent 3D model that can immediately be animated using several control points (red and green dots). Their trajectories are visualised as
grey curves. See our supplementary videos for these characters in motion. Colored source drawings by Hélène Leroux and Neth Nom.

We present a new framework for sketch-based modeling and animation of 3D
organic shapes that can work entirely in an intuitive 2D domain, enabling a
playful, casual experience. Unlike previous sketch-based tools, our approach
does not require a tedious part-based multi-view workflow with the explicit
specification of an animation rig. Instead, we combine 3D inflation with a
novel rigidity-preserving, layered deformation model, ARAP-L, to produce
a smooth 3D mesh that is immediately ready for animation. Moreover, the
resulting model can be animated from a single viewpoint — and without
the need to handle unwanted inter-penetrations, as required by previous
approaches. We demonstrate the benefit of our approach on a variety of
examples produced by inexperienced users as well as professional animators.
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For less experienced users, our single-view approach offers a simpler model-
ing and animating experience than working in a 3D environment, while for
professionals, it offers a quick and casual workspace for ideation.
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1 INTRODUCTION
Most forms of artistic expression span a range from formal to ca-
sual: for example, poetry includes everything from the villanelle,
whose strict rules demand painstaking construction, to freestyle
rap, composed in the moment of speaking. Likewise, music can be
a structured composition or an impromptu jam session, actors can
memorize lines or perform live improvisation, and a visual artist
can spend months on an oil painting, or do a 30-second gesture
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drawing. What the casual forms have in common is that they are
fast, immediate, intuitive, and low-risk, and they allow an artist to
produce a complete result starting from scratch. A casual mode of
expression is crucial to the creative process: people are the most
creative when they are in a state of “flow” [Csikszentmihalyi 1991],
which requires being free from technical obstacles, and especially
being free from the fear of making a mistake.
The art form we call animation has never truly had a casual

mode. Even the simplest animation techniques are extremely time-
consuming, and in 3D especially so, because there are so many
intermediate steps — modeling, defining skeletal joints and defor-
mation parameters, posing and setting keyframes — between an
idea and a finished result. There are certainly no tools that allow an
animator to go from a blank page to a full 3D animated character in
anything like real time. Animation’s lack of a native casual mode
drives animators to do their creative exploration in other mediums,
like thumbnail sketches, storyboards, or live-action video.
In this paper we propose a playful 3D modeling and animation

tool, called “MonsterMash,” that enables a casual creative experience
for ideation and prototyping. The user sketches out a character,
and the software automatically converts it to a soft, deformable 3D
model, which the user can immediately animate, simply by grabbing
parts of it and moving them around in real time.

In Monster Mash, 3D models can be created and animated from a
single view, without the need to specify an animation rig, perform
merging of model parts, or explicitly check consistency in depth
during the animation. The modeling process is performed jointly on
the entire mesh and is directly coupled with a set of dynamic depth-
ordering and positional constraints that together drive our novel
rigidity-preserving, layered deformationmodel,ARAP-L. Since these
constraints are active during animation they constantly influence
the object’s shape and help to preserve consistency in depth despite
the fact that the modeling as well as animation is performed from a
single viewpoint. To the best of our knowledge, Monster Mash is the
first sketch-based tool capable of creating and animating a smooth,
consistent 3D model from a single viewpoint within seconds, thus
unlocking the potential for casual creation.

2 RELATED WORK
A key research direction that represents a cornerstone for casual cre-
ation of animated 3D models is the sketch-based modeling approach
pioneered by Igarashi et al. [1999] in their system called Teddy. It
allows the user to specify a 3D model as a set of components whose
silhouettes are drawn in 2D and then inflated into 3D. Individual
parts are positioned in 3D space with the help of different view-
points and then merged. Thanks to this intuitive process, complex
3D models can be created from a set of hand-drawn strokes with
a relatively small amount of interaction. Follow-up works study
various ways the individual parts can be created through inflation,
manipulated, or joined together. Tai et al. [2004] use convolution
surfaces for inflation, Schmidt et al. [2005] propose blob trees, and
Nealen et al. [2007] allow the user to specify 3D control curves on
the surface of individual components, which enable better shape ma-
nipulation and specification of contact points. Bernhardt et al. [2008]
introduce a region-painting metaphor, which uses implicit surfaces

without the need to perform optimization. Gingold et al. [2009] use
a variety of structural annotations that better define the shape, as
well as interconnections of individual components. Finally, Rivers
et al. [2010] relaxes the necessity of producing the 3D geometry
while still being able to view the model from different viewpoints.
They decompose the input vector drawings into a set of billboards
whose centroids are interpolated in 3D space while the shapes of the
strokes inside the billboards undergo only a 2D morph. The result-
ing transition preserves the semblance of a convincing 3D motion.
Despite the success of these modeling techniques, they are all still
rather close to the traditional 3D CADmodeling workflow, in which
careful step-by-step viewpoint planning or tedious manipulation in
3D space is required.
For casual creation, interaction in 2D space is notably more ap-

pealing, as there is no need to leave the intuitive 2D mindset and
perform manipulation in 3D. Karpenko and Hughes [2006] address
this requirement in their SmoothSketch system. They first analyze
the input sketch to infer the shape of individual components and
then estimate how they are connected in 3D space. Although the
complexity of the 3D models that SmoothSketch can deliver is rela-
tively limited, the method demonstrates that a variety of modeling
tasks can be performed automatically with only 2D interactions.
Other works adopt a similar paradigm. Turquin et al. [2007] propose
a single-view system tailored to cloth modeling that uses function-
specific strokes to design garment breakpoints and folds. Olsen and
Samavati [2011] add automatic classification of input strokes while
Cordier et al. [2011] leverage object symmetries.

The simplified 2D scenario opens the possibility to use bas-relief
approximation [Joshi andCarr 2008] or normalmap estimation [Tuan
et al. 2015] which provide enough 3D structure for applications
when only shading effects are added to the input sketch or when
the camera undergoes a small out-of-plane rotation [Yeh et al. 2017].
Even in this simplified scenario complex layered structures can still
be created [Dvorožňák et al. 2018; Sýkora et al. 2014]. These layered
methods, however, require estimation of relative depth order of indi-
vidual layers, their absolute positioning in depth, and computation
of smooth interconnections.
In a similar vein to bas-relief modeling, Entem et al. [2015] pro-

pose a framework that exploits symmetries, depth order estimation
and implicit surfaces to produce full 3D models of animals. Their
approach was also extended to handle automatic decomposition
of an input drawing into a set of salient parts [Entem et al. 2019].
Similarily, Ramos et al. [2018] build a half-edge structure from the
input sketch to extract structural parts and their symmetries, which
are then converted into implicit surfaces to inflate the model. In
recent work, Bobenrieth et al. [2020] further assume that the input
sketch consists of a set of solid lines defining visible silhouettes and
dashed lines representing hidden outlines. Their method can then
produce 3D elements and merge them together to form the final
3D shape. Although these techniques can be used for single-view
modeling, they still subdivide the modeling process into a set of
sub-problems treated independently — i.e., they first perform infla-
tion of individual components, then position them in depth, and
finally determine the resulting intersections or perform a merging
operation to produce the final 3D mesh. As a result, the output
surfaces contain visible transitions between individual parts, which
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(a) our approach (e)(b) (c) (d) RigMesh [Borosán et al. 2012]

Fig. 2. Monster Mash in action: (a) From a sparse set of strokes drawn solely in a 2D plane, some of which are marked in red to indicate symmetric components,
our system can inflate and directly animate a complete, consistent 3D model (b) through a set of user-specified control points (red dots). A key contribution of
Monster Mash is that it introduces a new rigidity- and layer-preserving deformation model (ARAP-L) that helps to maintain consistency of the resulting
3D mesh during the modeling phase as well as animation. In contrast to using standard as-rigid-as-possible (ARAP) deformation, our deformation model
avoids creating certain undesirable shape details, which may become visible when applying ARAP directly to the rest pose (c). Also, since the position of
control points is specified in 2D, using ARAP alone some components of the resulting model may collide and penetrate due to depth ambiguities. All of these
artifacts are automatically eliminated using ARAP-L. Our new approach can significantly lower the amount of interaction required to produce a consistent,
animated 3D mesh, making the creative process fluid and unhindered. By contrast, previous sketch-based tools that allow for modeling and animation require
users to work in multiple viewpoints and build an animation rig before the model can be inflated and animated (d). Moreover, they also suffer from various
shape-modeling artifacts, caused by merging the individual mesh components in a post-process (e). In Monster Mash, inflation is applied jointly on the entire
model, which leads to notably smoother results, as shown in (b).

look unnatural. Moreover, all these techniques consider solely the
modeling phase: issues arising when the inflated models need to be
animated are not addressed.

An alternative approach to single-view sketch-based modeling is
presented by Xu et al. [2014] in their True2Form system, where a
specific form of product design sketches is assumed as input. Such
sketches contain auxiliary cross-section curves that are exploited
by the algorithm to interpret the final consistent 3D shape. Simi-
larly, in BendSketch [Li et al. 2017], in addition to silhouettes, the
input drawings include special strokes to represent the bending
directions of the final 3D form. Although these techniques are ca-
pable of producing quite complex 3D shapes from a single-view
sketch, they require experienced users who are familiar with draw-
ing cross-section curves or can imagine the desired bending of the
final surface.
With recent progress in deep neural networks, data-driven ap-

proaches become a viable basis for sketch-based modeling. Lun et
al. [2017] predict the depth and normal maps from input sketches
drawn from multiple viewpoints. From these maps, a point cloud is
reconstructed, which is further refined to obtain the target 3D mesh.
Delanoy et al. [2018] train a 2D-to-3D network that can directly
convert multiple sketches drawn from different viewpoints into
a volumetric representation. Finally, Li et al. [2018] infer a depth
map and a normal map from a single-view sketch with additional
depth and curvature hints. Multiple viewpoints can be provided to
progressively improve the resulting 3D mesh. In contrast to purely
geometric approaches, neural-based techniques require training
datasets, which influences the ability of the network to predict the

resulting 3D shape. Moreover, if the user is not satisfied with the re-
sult, it may be challenging to gain precise control over the inference
process.
A common drawback of both the purely geometric and data-

driven techniques is that their final result is a 3D mesh that needs to
undergo an additional rigging phase before it can be animated. This
limitation is recently addressed by sketch-based modeling tools that
combine model creation with preparation of an animation rig. In
RigMesh [Borosán et al. 2012], ArtiSketch [Levi and Gotsman 2013]
or AniMesh [Jin et al. 2015], a multi-view part-based sketching
workflow is used to design a rigged 3D mesh that can be subse-
quently animated. A key idea of these works is to build a skeleton
on the fly during the creation of individual model parts. When a
specific part is finished, a bone is automatically assigned to it and
subsequently connected with other nearby bones to form skeletal
joints. Alternatively, Bessmeltsev et al. [2015] let the user prepare
the skeleton in advance to accompany an existing 2D sketch. This
auxiliary input not only facilitates subsequent animation, but also
helps to reduce depth ambiguities during the modeling phase. Al-
though the simultaneous rig creation enables direct animation after
the model is finished, it still requires using multiple viewpoints and
carefully planning the skeletal structure, which could be unintuitive
and confusing for novice users who may not be familiar with the
workflow used in professional animation tools. Even for professional
users, the burden of rig preparation could discourage them from the
creative process of fast ideation. Moreover, during the subsequent
animation the user needs to leave the intuitive 2D domain again
to check consistency of individual moving parts in 3D and avoid
their unintentional collision or penetration. Effects such as body
parts pressing up against each other and affecting the final shape
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Fig. 3. Full pipeline: (a) A user draws a set of strokes representing semantically meaningful parts of the target 3D model. For each stroke, the user indicates
whether the part it specifies lies in front of (“⟩”), behind (“⟨”), or is symmetric to (“⟨⟩”) — that is, should be replicated on both sides of—the previously drawn
parts. Open strokes are closed automatically; if all or a portion of an added closing curve for one part is on top of (or behind) another part, then that portion of
the curve becomes a merging boundary between the parts. The partial depth-ordering constraints (b), indicated by arrows pointing to the closer part, are used
to compute the total depth order of all the parts, represented by the brightness of the part in (c). The green line in (c) closes the boundary of part A and, as it
is on top of B, is a “merging” boundary where the domains of A and B will be stitched. In (d), the yellow and cyan lines indicate curves where inequality
constraints will be maintained when constructing a 3D model. Mesh points along the yellow curves belong to A, and their depths are constrained to lie in
front of all points in B, while points along the cyan curve belong to B and have depths constrained to lie behind points in A. Note that after constructing and
animating the model, part A can move relative to part B, and thus the yellow and cyan curves will be updated dynamically. After inflation (e), we have a 3D
shape with all parts stitched together, so that, for example, part A smoothly connects to part B (joined along the green line indicated in (c)). However, the
Dirichlet boundary constraints force all surface parts to be height fields “rooted” in the z = 0 plane, as seen in the rotated view in (e). Imposing the ordering
constraints with our ARAP-L deformation results in a mesh (f) with parts correctly moved in front of (or behind) other parts. For example, the points from
part A on the yellow curve in (d) are now above part B, and the points from part B on the cyan curve in (d) are now below part A. Finally, as shown in (g),
the user can interactively deform the mesh into a new pose with point constraints, while automatically maintaining ordering constraints, all in the same
ARAP-L framework.

are not supported, which may lead to disturbing modeling artifacts
(see Fig. 2).

In our workflow, we adopt the simplicity and intuitiveness of
the shape manipulation techniques based on as-rigid-as-possible
(ARAP) deformation [Igarashi et al. 2005; Sorkine and Alexa 2007].
These methods present a viable alternative to traditional rig-based
control while having a comparable expressive power [Jacobson
et al. 2012]. Their key advantage is that they do not require a pre-
defined skeletal structure, accurate skinning, or complex algorithms
to drive direct manipulation of the skeleton (e.g., inverse kinematics).
Although ARAP deformation could be applied to a 3Dmodel inflated
by a sketch-based modeling system, it may fail to produce desirable
results due to the shape-preserving nature of the ARAP model:
for example, an impression in the surface, caused by an attached
model part, may persist even when the attached part is moved to a
different position. Also, since the manipulation is performed in a 2D
plane, parts could collide with each other in 3D space and produce
inconsistent results. (See the comparison of the results produced by
our approach versus the original ARAP deformation in Fig. 2.)

3 OUR APPROACH
Our sketch-based modeling and animation tool builds upon an estab-
lished part-based metaphor [Igarashi et al. 1999] that allows a user
to quickly outline the basic structure of the target 3D model. In this
workflow, individual parts specify the shape of an unoccluded 2D
projection of a semantically meaningful part of the target 3D model.
Our method, however, differs in the way those user-specified parts
are subsequently processed. In most of the previous sketch-based
modeling approaches, each part is inflated independently and then
merged with the rest of the 3D model. In our workflow, we extend
the method of Dvorožňák et al. [2018], in which parts are merged in
advance before the model construction process starts, leading to a
more natural-looking shape. However, a key drawback of Dvorožňák
et al.’s method is that it considers only 2.5D bas-relief rather than
full 3D meshes, and also does not take any sort of animation into
account. In our approach we extend the original concept into a
fully 3D scenario and provide the ability to animate the mesh while
dynamically updating deformations resulting from the layering of
parts on top of one another.
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To provide an input to our method, the user starts with an empty
canvas, or (optionally) an existing drawing or photograph over
which strokes can be traced. A tablet or a mouse can be used to
sequentially draw a set of open and closed 2D strokes (see Fig. 3a).
These strokes specify the shape of individual parts (Fig. 3b). The
user can indicate (e.g., with specific hotkeys) whether those parts
are positioned in front of or behind already drawn parts (see ar-
rows in Fig. 3a). Thanks to this interface, relative depth ordering of
individual parts is established (Fig. 3b). Parts can also be marked
as bilaterally symmetric (e.g., the elephant’s ear in Fig. 3a). Those
parts are automatically duplicated, and their relative depth order is
changed so that the symmetric replica lies on the opposite side of
the target 3D object. If the drawn stroke is open (e.g., the elephant’s
front leg in Fig. 3a), it is automatically closed (see Fig. 3b) and the
closing line is treated as either a free boundary (when it lies outside
other parts) or as a merging boundary (when it lies over or under
an existing part). Typically, the user draws open curves for the sake
of merging into another body part; we focus on this use case for the
remainder of the paper.
From these inputs, a set of planar regions is created, each repre-

senting a specific model part, for which relative ordering in depth
and merging boundaries are known (see Fig. 3c). We merge these
input regions to form a joint, possibly non-planar mesh, which is
subsequently inflated to have a basic rounded 3D shape (Fig. 3e),
and finally deformed (Fig. 3f) to satisfy relative depth ordering of
individual parts (Fig. 3d) as well as additional constraints specified
by the user via animation handles (Fig. 3g). The user can later assign
motion trajectories to these handles in order to animate the inflated
3D mesh.

In the following sections we describe the formulation of our joint
framework in the continuous domain and then discuss the details
of our discrete implementation.

3.1 Joint formulation
In this section, we describe a continuous formulation of our novel
approach, and then in the following sections we develop a corre-
sponding discrete variant and show how to solve it efficiently.
As input, we have a user-drawn curve Dp for each body part p.

WhenDp is an open curve we automatically close it using a merging
curve Bp to delineate the entire part’s bounded domain Ωp , i.e.,
∂Ωp = Dp∪Bp . The part domains are then “stitched” together at the
location of merging curvesBp to formΩ =

⋃m
p=1 Ωp , the union of all

m regions Ωp . Although such a domain merging step is performed
also in the method of Dvorožňák et al. [2018], in our case we aim to
produce full 3D models, i.e., we need to duplicate each part’s domain
to add its back-facing side that is treated differently than the front
(this is a non-trivial extension described later in Section 3.2).

In the next step we inflate the Ω, using the method of Sýkora
et al. [2014]; i.e., we solve a Poisson equation, ∆h̃(x) = c , for a
height field h̃(x) : Ω → R jointly over all the parts, subject to
Dirichlet boundary conditions along user-drawn contours, h̃(x) = 0
∀x ∈ {Dp }, where ∆ is the Laplace operator and c is a user-specified
scalar corresponding to a global amount of inflation for each side
of the region. When c < 0 the inflation goes toward the viewer
(front-facing side) and when c > 0 it goes further away from the

viewer (back-facing side). Since the resulting surface h̃(x) tends to
have a parabolic profile, Sýkora et al. convert it to a more pleasing
semi-elliptical height field function h0 by taking the square root of

h̃, i.e., h0(x) =
√
h̃(x).

Note that h0(x) is essentially a union of connected, overlapping
height fields over stitched, overlapping domains {Ωp }, i.e., two
height fields per part p (front- and back-facing side). We now treat
the resulting union as a 3D surface д0 = [x ,h0(x)] and we explicitly
model its topology to form a manifold. This is an important differ-
ence when compared to the method of Dvorožňák et al. [2018] that
operates only on a set of front-facing height fields to produce the
final bas-relief model.
After the inflation, the resulting shape has smooth connections

between parts; however, they interpenetrate heavily, because noth-
ing enforces one part to be in front of another, i.e., there is no depth
ordering prescribed. To produce the final consistent surface д we
minimize our novel ARAP-L objective:∫

д0
min

R∈SO (3)
∥∇д − R∇д0∥2 ds (1)

subject to depth ordering constraints for modeling:

дz (sp ) = дz (sq ) ∀(sp , sq ) ∈ C=,

дz (sp ) ≤ дz (sq ) ∀(sp , sq ) ∈ C≤,

дz (sp ) ≥ дz (sq ) ∀(sp , sq ) ∈ C≥,

(2)

and positional constraints added by the user for animation:

д(si ) = pi ∀(si , pi ) ∈ Cpos, (3)

where ds is the surface element on д0; ∇ is the surface gradient
operator; R ∈ SO(3) is the best-fitting rotation between the initial
state and the deformed state for each point on the surface; дz is
the z-coordinate of the resulting model, with z being the direction
toward the viewer; C=, C≤ , and C≥ are sets of point pairs that
specify relative modeling depth order for two regions; and Cpos

stands for a set of positional animation constraints. In this case,
with sp and sq denoting locations on the surface of parts p and q,
respectively, an ordering constraint such as дz (sp ) ≥ дz (sq ) applies
if the orthogonal projections along the z-axis of дz (sp ) and дz (sq )
have the same 2D coordinates and part p is in front of part q.

A key, novel aspect of our joint ARAP-L objective is that it enables
deforming д0 to simultaneously enforce the layering constraints
needed for modeling and enable users to animate the model using
positional constraints. Moreover, since the layering constraints in
Eq. (2) are updated dynamically, during the animation regions of
the body that are newly covered by a body part begin to deform
in response, while other regions, no longer covered, release their
deformations. Such a functionality would be difficult to achieve
using the method of Dvorožňák et al. [2018] which tends to produce
severe distortion artifacts in this interactive scenario (see Fig. 12).

In the next sections, we describe in detail the discrete formulation
and implementation of our approach.

3.2 Inflation
In this section we describe the discretization of the inflation step.
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Fig. 4. An example of domain stitching and mesh closure: (a) Two planar domains Ωp & Ωq corresponding to a leg part p (drawn as an open curve) and a body
part q (drawn as a closed curve) are stitched together through a merging curve Bp . (b) We illustrate a vertical cross-section of the domains, slicing (a) along a
yz-plane passing through the body and leg. The two domains Ωp and Ωq are duplicated so that their symmetric replicas Ωp′ and Ωq′ lie on the opposite sides
of the original domains. (c) Then the symmetric domains Ωp & Ωp′ are stitched along their boundaries — except along Bp where they remain open — to form
Ωp∪p′ , and domain Ωq is stitched along its entire closed boundary to Ωq′ . The domain Ωq is then split (red line) along Bp on the front side, creating a hole in
Ωq . As drawn, the upper part of the hole is then connected to Ωp to form one connected domain Ω (d). This single connected domain Ω is then inflated into
3D as a union of front- and back-facing height fields that are topologically connected due to domain stitching and now represent an initial mesh (e). Before
deforming this mesh, inequality constraints are constructed to move the front half of the leg to lie in front of the body. To prevent the back half of the leg from
popping out of the body during animation, we also add an equality constraint C= that forces the vertices along the originally open boundary in Ωp′ to agree
with the corresponding vertices along the lower half of the hole created in Ωq . After enforcing these constraints with deformation, the front half of the leg
moves to lie in front of the body, and the back half penetrates the body and meets up with the body vertices inside (f). These constraints are updated as
needed and satisfied throughout animation.

As noted in Section 3.1, to create a consistent closed model, we
generate two regions for each user-drawn part, one facing towards
the viewer and one facing away. The region facing the viewer is
inflated according to the constant c , while the region facing away is
inflated by −c . In terms of notation, we treat these inflated regions
as separate body parts p and p′, corresponding to, e.g., the front
half of a leg and the back half of the same leg, respectively. These
paired front- and back-facing regions are stitched together along
the user-drawn curve Dp (and its identical copy Dp′ ).
We convert the continuous, uninflated model Ω into a triangle

mesh consisting of vertices x = [x1, x2, . . . , xn ]. Let us consider
a single body part p covering the planar region Ωp defined by a
user-drawn contour Dp . As mentioned, if the contour is open, we
complete it with an additional boundary curve Bp (e.g., the green
line in Fig. 3c). The union of these curves forms ∂Ωp , sampled to
form a fine polygon bounding the region. Then we insert auxiliary
vertices into its interior and compute a Delaunay triangulation
constrained by the edges along the vertices of ∂Ωp . We then attach
parts by stitching their domains together one-by-one. Suppose part
p is attached to part q by open boundary Bp , as shown in Fig. 4a.
We insert vertices and edges aligned with Bp into the triangulation
of Ωq , duplicate these inserted vertices, and split the mesh along
Bp , creating a “hole” of zero area along Bp in Ωq (red line in Fig. 4c).
We then join the triangulation of Ωp with Ωq at Bp along one
side of the hole so as to smoothly continue one domain into the
other; since we are just working with a planar triangulation, smooth
continuation simply means that Ωp connects to the side of the hole
with neighboring vertices along Bp in Ωq not already covered by
Ωp (Fig. 4d). Note that the resulting stitched triangulation is still
manifold, due to the duplication and hole creation procedure.

With the topology of the domain mesh defined, we can now
compute the height field h̃ = [h̃1, h̃2, . . . , h̃n ]T over the domain. At
each domain vertex i away from user-drawn curves (i.e., at xi ∈

ΩPi \ DPi , where Pi denotes the body part that vertex i belongs to),
h̃i follows the Poisson equation:

∆h̃i =
∑
j ∈Ni

wi j (h̃j − h̃i ) = si · ai · c, (4)

where Ni is the set of vertices in the neighborhood of i ,wi j are the
standard cotangent Laplace-Beltrami weights [Crane et al. 2013], si
is +1 for a front-facing region and −1 for a back-facing region, and
ai is 1/3 the sum of the areas of the triangles incident to vertex i .

Conversely, the height h̃i of a user-drawn boundary vertex i is
subject to the Dirichlet boundary condition:

h̃i = 0 ∀xi ∈ DPi . (5)

Assembling the si · ai · c into vector c, we then solve the Poisson
equation across all of the domains as a linear system:

Lh̃ = c, (6)

where L is the matrix form of the standard cotangent discretization
of the Laplace-Beltrami operator, modified to include boundary
conditions (5).

To obtain a semi-eliptical shape we compute the height values as:

h0i = si

√
|h̃i |. (7)

Finally, we convert the solution to a 3D mesh with n vertices with
each vertex g0i = [xi ,h0i ] and connectivity given by the (stitched)
triangulation of all the regions {Ωp }.
Fig. 3e shows a typical model after inflation. Note that regions

whose domains were stitched together now join smoothly, e.g., the
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front side of part A attached to part B in the figure. Front- and
back-facing height fields for a given body part (e.g., front and back
side of the same leg) are also joined. Due to the Dirichlet boundary
conditions, however, the height fields that were stitched together
are rooted at the z = 0 plane along the user-drawn curves. In the
next section, we use as-rigid-as-possible deformation with layering
constraints to address this problem, and to add the ability for the
user to directly deform and animate the mesh.

3.3 Deformation
The inflation procedure described in the previous section provides us
with a surface g0 that is locally well shaped, but whose parts are not
properly arranged in space. Therefore, g0 serves as a reference for a
preferred surface curvature, so to speak. To satisfy depth ordering
and positional constraints and arrive at a reasonable 3Dmesh model,
we minimize our ARAP-L objective.

For all initial vertex positions g0i in the inflated model, we seek
their final positions gi that minimize the following objective:

1
2

∑
i

min
Ri ∈SO (3)

∑
j ∈Ni

wi j ∥(gi − gj ) − Ri (g0i − g0j )∥
2, (8)

subject to layering and positional constraints. Here, Ri is the best
fitting rotation between the set of original mesh edges and the un-
known (deformed) mesh edges, weighted by the standard cotangent
weightswi j .

The layering constraints consist of:

gi,z ≥ gj,z ∀(i, j) ∈ C≥

gi,z ≤ gj,z ∀(i, j) ∈ C≤

gi = gj ∀(i, j) ∈ C=
(9)

where C≥ and C≤ are the ordering constraints, i.e., constraints on
z coordinates that keep parts in front of and behind other parts,
respectively, and C= associates vertex pairs that should coincide.
Specifically, if part Pi is in front of part Pj , then C≥ contains

(i, j) if i corresponds to a user-drawn boundary vertex with xi ∈

DPi and Π(gj ) is the nearest point to Π(gi ), where Π(·) performs
orthographic projection onto the plane z = 0. Fig. 3d illustrates this
case, with the yellow curves representing boundary points of a part
(A) that must stay in front of another part (B). The setC≤ is defined
analogously, illustrated by the cyan curve in Fig. 3d. Note that, for
efficiency purposes, we only consider the user-drawn curves for the
inequality constraints. The remainder of the interior regions tend
to move as rigidly as possible according to the movement of these
curves, approximately keeping the parts in front (or behind) one
another as needed. Enforcing the layering constraints only along
drawn curves also has the effect of allowing interpenetration of, for
example, the back half of a part through another part it is attached
to; we discuss this further below.
Meanwhile, C= may contain the boundary of a part such as, for

example, a small spheroid representing the eye of an animal to be
attached to corresponding points on the animal’s head. In practice,
we use the equality constraints to keep the back half of a part from
popping out from the interior of the body part it is attached to
(see Fig. 4e-f). Note that the animator has the option of disabling

these equality constraints to improve performance without compro-
mising quality if the animated motions do not cause a part to pop
out.
In addition to these layering constraints, we need to satisfy po-

sitional constraints pi specified by the user to animate the final
mesh:

gi = pi ∀(gi , pi ) ∈ Cpos. (10)
These constraints can be specified in 3D, or, when interaction is
strictly in 2D, they can be adjusted to ensure equality only in the
xy-coordinates of gi and pi .

Minimizing the ARAP-L objective (8) subject to layering (9) and
user-interaction constraints (10) is equivalent to minimizing the
following objective (neglecting additive terms not dependent on g):

min
g

1
2
tr[gTL(g0)g] − tr[R(g0, g)K(g0)g], (11)

subject to linear (in)equality constraints:
Aieqgz ≤ bieq ,

Aeqg = beq.
(12)

In the main objective (11), L(g0) is the standard cotangent discretiza-
tion of the Laplace-Beltrami operator with weights computed over
the source mesh, R(g0, g) = (R1, . . . ,Rn ) ∈ SO(3) is a matrix of the
stacked local rotations (whose value depends on the unknown g as
well as fixed g0), and K(g0) ∈ R3n×n stacks differential coordinates
of the source shape g0. A more detailed derivation of this matrix
format of the ARAP energy is given in [Jacobson et al. 2012] (Eq. (11)
in their paper).

For the (in)equality constraints (12), Aieq and Aeq are matrices of
linear coefficients for (in)equality and positional constraints (sparse
matrices used to take simple differences between coordinates), and
bieq and beq are the right-hand-side vectors of constraints. Note
that Aeq includes equality constraints from bothC= andCpos. In the
examples in this paper bieq = beq = 0, though these right-hand-side
vectors could in principle be non-zero if the user wished, e.g., to
bring an overlapping surface further to the fore.
We solve the optimization problem (11)-(12) using the iterative

local-global approach of Sorkine and Alexa [2007] combined with
an active-set method [Nocedal and Wright 2006]. In each iteration,
we first fit the local rotations R(g0, g) for the current estimate of the
value of g using SVD on each mesh 1-ring. We then consider these
rotations fixed, which turns the objective in (11) into a quadratic
expression in g, so that (11)-(12) becomes a quadratic programming
(QP) problem. We solve the QP using active set, which enables us
to control the number of performed iterations so as to maintain an
interactive frame rate. We alternate between locally fitting the rota-
tions and solving the QP in a continuous loop, where the constraints
(12) are continuously updated according to user interaction.

Fig. 3f shows the result of applying the ordering constraints to a
model. The boundaries of legs now correctly shift off of the z = 0
plane (pulling the interiors with them) to satisfy the constraints. As
noted above, we see that, e.g., the back half of a leg that sits in front
of the torso is not constrained to be in front of the torso. We also
tried imposing this constraint, which would move the entire leg in
front of the torso in this case. We found that both looked reasonable,
but that the interpenetrating solution still gave a good sense of part
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attachment while running faster due to fewer constraints. Finally,
with our ARAP-L framework in place, the user can also deform and
animate the model with point constraints, reposing the model as
shown in Fig. 3g.

4 USER EXPERIENCE DESIGN
In designing the user experience for Monster Mash, we focused
on certain qualities with the intention of maximizing the user’s
creativity:

• Responsive: actions have immediate perceivable consequences.
• Fluid: dynamic actions have dynamic results.
• Intuitive: behaves in an expected and predictable way.
• Discoverable: you can learn how it works by playing with it.
• Low-risk: it takes minimal effort to try out a new idea, so
failure is not costly.

Our tool has two main interaction modes: a drawing mode, in
which the user creates sketches by drawing (as described in Sec. 3),
and an animation mode, where the user can move and animate the
resulting 3D mesh. The user can switch back and forth between
these two modes at will, and as much information as possible is
preserved across those transitions. For instance, if the user animates
all of a character’s limbs, and then later goes back to drawing mode
and deletes a limb, the animation on the remaining parts will be
preserved. This gives the user freedom to experiment with different
designs and body plans, reduces the cost of mistakes, and encourages
a deeper understanding of the relationship between the character’s
design and its animation.

Previous tools based on ARAP deformation [Jacobson et al. 2012;
Sorkine and Alexa 2007] allowed the computation to converge to a
final result before each frame is drawn. In our tool, we instead let
the user observe the individual iterations as an ongoing dynamic
process, creating a compelling illusion that the character is made of
some flexible material with its own physical properties. Users have
described it as feeling like an inflatable toy or a stuffed animal. This
makes the interaction more enjoyable, and also makes the charac-
ter’s behavior under deformation a discoverable quality, which is
important for developing the user’s intuition.
In the animation mode, the user can create a control point any-

where on the character’s surface, and animate it by moving it in real
time while the software records the motion. The user can create and
animate additional control points as desired, and their movements
will then be automatically synchronized with the timing of the first
(master) point. In this way the user can build up a complex action
like a walk by layering cycles, one body part at a time.

Coordinating movement between multiple control points in real
time is not a trivial task — it requires some skill on the user’s part,
like learning to dance. The Monster Mash tool provides a few op-
tions to make this skill easier to master. There are three different
recording modes, designed to solve the synchronization problem in
different ways: (1) overwriting fixed-length cycles, where the con-
trol point’s movement is recorded continuously in a loop, constantly
overwriting the previous cycle; (2) averaging fixed-length cycles,
where the current movement is blended with previous cycles, which
can serve to smooth out kinks and pops; and (3) time-scaled cycles,
where each cycle begins on the same frame, but all the cycles are

(a) (b) (c)

Fig. 5. A walking cycle sequence: (a) input hand-drawn sketch, (b) inflated
3D model with control points, (c) walking cycle animation created by record-
ing trajectories of individual control points specified by the user.

stretched or compressed in time to match the timing of the master
control point. There is also an optional metronome, which provides
an audio "click track" to help the user get into the rhythm of the
movement.

Each control point’s motion is represented visually by a curve in
screen space. The user can copy and paste these curves from one
control point to another, and adjust their overall position, orienta-
tion, and scale. The user can also speed up, slow down, or offset
each point’s timing using hotkeys. So, for instance, if the user wants
a perfectly symmetrical walk, she can copy the motion from the
character’s left foot to the right foot and offset the timing by half a
cycle (see Fig. 5 and our supplementary video).

5 RESULTS
We implemented our approach using C++, libIGL1, Eigen2, and,
for the user interface, Qt3. To achieve interactive performance, we
paid special attention to the difficulty of finding correspondences
between mesh vertices needed to satisfy the relationships in equa-
tion (12). To avoid on-the-fly re-meshing, we refine the model to
have a sufficiently dense sampling of vertices. We then maintain
a uniform spatial subdivision in 2D, with each cell containing a
set of vertices with similar (x ,y) coordinates. Using this data struc-
ture, we can quickly retrieve corresponding candidates for a given
(in)equality constraint. Due to the layering of parts, a query vertex
in one layer ℓ may have corresponding vertices across multiple
other layers. In this case, we choose only the correspondences in
the two layers on either side of ℓ that are closest with respect to the
total depth ordering of individual model components. This approach
avoids creating a linear dependence of constraints that could lead
to an over-constrained linear system when optimizing (11). Using
this particular implementation of handling vertex correspondence
on a single-core 3GHz CPU, a model consisting of 6k vertices and
12k faces can be manipulated at interactive rates: around 7 frames
per second.

To further increase the frame rate we allow the user to optionally
switch between two interaction modes: (1) a full-fledged per-frame
1https://libigl.github.io/
2http://eigen.tuxfamily.org/
3https://www.qt.io/
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(a)

(b)

Fig. 6. Our approach can handle 3D models with complex topology con-
taining an arbitrary number of components stored in multiple overlapping
layers (b). Strokes that specify boundaries of these components can freely
overlap (a).

Fig. 7. Although our framework was primarily developed for a single view-
point workflow, it also allows for out-of-plane rotations. The assumption is
that these user edits will not be too excessive, as, in extreme cases, out-of-
plane rotations can invalidate depth-ordering constraints.

computation of the ARAP-L objective; and (2) interleaved process-
ing, where two threads are running in parallel, with one computing
simple ARAP deformation without layering constraints, and the
other providing a full-fledged solution using the ARAP-L formula-
tion. In this latter case, xy-coordinates for a vertex are taken from
the ARAP thread (updated quickly) and are combined with the z-
coordinate taken from the ARAP-L thread (updated more slowly).
With this interleaving, we can increase the frame rate to around 15
frames per second, which significantly improves responsiveness of
the whole system and makes the interaction more enjoyable.
Our system has no specific limits on the number of individual

components or layering complexity. It can handle sketches that con-
tain multiple overlapping strokes (see Fig. 6). Although its primary
use case is the single-view scenario where we deliberately limit rota-
tions Ri in (8) to stay in the xy-plane, our framework can also handle
out-of-plane manipulations by allowing Ri to include full 3D rota-
tions (see Fig. 7) provided that they not violate the depth-ordering
constraints (9) specified with respect to the original viewpoint.

We evaluated our approach on a set of organic models. Results are
presented in Figures 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, and in our supple-
mentary materials. In each caption, we refer to our “inflated model”
as the model after inflating the drawing and satisfying the ordering
constraints, but before the user has begun editing and animating

(a) (b)

(c) (d)

Fig. 8. Elephant result: (a) input hand-drawn sketch traced over the photo-
graph; (b) inflated 3D model deformed to a new pose using a set of control
points specified by the user (red dots); (c) the deformed model viewed from
a different viewpoint; (d) the inflated model with a texture taken from the
original photo. Source photograph "Elephant side-view Kruger.jpg" by Felix
Andrews / CC-BY-SA-3.0.

(a) (b) (c)

Fig. 9. Heart result: (a) original scientific illustration of the heart with a set
of input hand-drawn strokes traced over the illustration; (b) inflated 3D
model; (c) inflated model with a texture taken from the original illustration
and shading.

the 3D model. When a model is traced over an existing photograph,
the original texture from the photograph can be mapped onto it to
produce a photorealistic look (see Figures 8 and 9). In particular,
we simply map the xy-coordinates of mesh points directly to uv-
coordinates of the image — a simple, orthographic “x-ray” projection
texture mapping. For purely hand-drawn models a more stylized
appearance may be preferred. In this case we can apply real-time,
example-based stylization [Sýkora et al. 2019] (see Fig. 10).
The presented results demonstrate that only a limited amount

of user interaction is required to produce relatively complex 3D
models and to immediately animate them. The resulting animations
are free of artifacts that can otherwise arise when not adapting the
original shape to a new pose (see Fig. 2). By taking into account
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(c) (d)

(a) (b)

Fig. 10. Unicorn result: (a) input hand-drawn sketch; (b) inflated 3D model
with a set of control points specified by the user (red dots); (c) a new pose
of the model specified by moving the control points; (d) stylized render of
the deformed model seen from behind.

relative depth-ordering constraints our technique can automatically
avoid collisions and allow the user to animate the model in the
2D plane without having to change viewpoint to resolve collisions
(see Figures 2 and 11). Besides automatic shape adaptation and
collision handling, in motion our framework also avoids the sort of
unnaturally stiff deformations common in, for example, skinning
frameworks. Instead, it creates a lively dynamic behavior that gives
the feel of a flexible material, for which a complex simulation of an
accurate physical model would otherwise be required. On top of
this secondary motion, additional procedurally generated dynamic
effects can be added by manipulating the rotation matrices Ri in (8),
e.g., changing their scaling factor to simulate breathing (see our
supplementary video).

Our approach can also be used to create simple animation cycles.
Thanks to our animation interface described in Section 4 the user
can interactively move individual control points and record their
closed trajectories in time. Those can then be replayed in real time
to produce the final animation (see walking cycle example in Fig. 5
and our supplementary video).

5.1 Users’ feedback
We conducted an informal study to evaluate our user interface
proposed in Section 4 as well as to get a general feedback from
prospective users. We gave our system to a group of 2 novice users
and 5 artists with various levels of experience in 2D and 3D computer
animation (80%) as well as traditional hand-drawn animation (60%).
Their task was to prepare a 3D animation in their own style from
scratch. The introductory video we provided them as well as results
of their efforts can be viewed in Fig. 1 and in our supplementary
video.

Artists as well as novice users had fun playing with the system
and appreciated how quickly their hand-drawn characters could be

(f)

(a)

(b) (c)

(d) (e)

(g)

Fig. 11. Cheetah result: (a) input hand-drawn sketch; (b) inflated 3D model
with a set of control points specified by the user (red dots); (c) a new pose of
themodel specified bymoving the control points. (d)When shape-preserving
deformation is applied directly on (and “baked into”) the inflated mesh,
shapemodeling artifacts become visible when re-posing (red arrows). (e) Our
approach can adapt the model to respect the new pose and thereby suppress
such artifacts. When the inflated 3D model is manipulated using shape-
preserving deformation from a side view (f), some parts of the model may
collide and penetrate (red arrow). This is caused by the fact that the absolute
position in depth is difficult to specify from this viewpoint. Our framework
resolves this problem automatically (g) by satisfying prescribed relative
depth-ordering constraints specified during the sketching phase.

converted into a 3D model and immediately brought to life. They
liked the possibility of obtaining appealing results instantly. The
system also motivated them to be more spontaneous. They also
found an interesting added value of the system — the dynamic
effect that resembles momentum or gravity, and which introduces
a secondary motion superimposed on their own animation. This
effect can help give the appearance of more complicated natural
motion without the need to animate it explicitly or to use any sort
of complicated keyframe-based solution.
The most common suggestions given by artists were to add a

timeline and use keyframes for finer control over the timing of the
animation loops. They also would appreciate having greater control
over the stiffness and softness of different parts of the character.
One artist was very much interested in having a motion-parenting
option, e.g., to be able to design an animation of wings on a bee, and
then animate the bee with the wings moving. Some artists found
the animation they were creating hard to predict, which may be
fun when exploring ideas, but can be a drawback in a more serious
context where highly accurate timing and positioning is required.
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Novice users were excited they can create and animate a relatively
complex 3D model on their own. Monster Mash was a first tool that
allowed them to accomplish such a seemingly difficult task they
initially perceived as almost impossible. This positive experience
motivated them to explore the system more. Although they were
not able to use the tool to a similar extent as professional artists,
they enjoyed the possibility of using only a single control point with
which it is already feasible to generate relatively complex motions
for their characters.
The overall outcome of our informal study can be summarized

in an interesting reaction of one professional animator: “I don’t
see Monster Mash as a replacement for traditional 3D animation
tools, but almost like a different medium: a new way to animate
characters that combines elements of design, sculpture, animation,
and puppetry.”

5.2 Comparison
We compared our approach to RigMesh [Borosán et al. 2012], which
is used as the modeling and rigging part of the AniMesh system [Jin
et al. 2015]. It represents the current state of the art in systems
that combine sketch-based modeling with animation. As shown
in the supplementary video as well as in Fig. 2, RigMesh requires
far more manual intervention than our system to create a model
(e.g., to model the mouse in Fig. 2, our approach took 1 minute
whereas RigMesh required almost 7 minutes). Moreover, RigMesh
relies on positioning in a 3D space as well as on careful planning
of the skeletal structure. In our tool, after drawing a few strokes
the model is immediately ready for animation. In addition, dur-
ing the animation with RigMesh the model needs to be observed
from different viewpoints to avoid interpenetrations. In our system
collisions are automatically avoided thanks to depth-ordering con-
straints. Also, the shape produced by RigMesh looks unnatural due
to visible bulges produced by Laplacian smoothing at the boundaries
of individual parts (see our supplementary material for additional
comparison with RigMesh).
We also compared our results with the models produced by the

method of Dvorožňák et al. [2018]. A key difference here is that in
our case we can produce full 3D model (Fig. 12). Moreover, when
their bas-relief approximation is animated using their deformation
model, which is not shape-preserving, the resulting mesh suffers
from severe distortion artifacts (c.f. Fig. 12 and the supplementary
video). For comparisons of computational overhead and results
of other sketch-based modeling systems, including the methods
of Entem et al. [2015; 2019], Bessmeltsev et al. [2015], and Li et
al. [2018], please refer to our supplementary meterial.

6 LIMITATIONS AND FUTURE WORK
Although we demonstrated how our method makes it possible to
rapidly create consistent animated meshes from a few hand-drawn
strokes, there are some limitations, which may motivate follow-up
work.

One of the key trade-offs of our single-view modeling scenario is
that the depth-ordering constraints are related to the original view-
point. This fact inherently limits the extent to which the model can
be deformed, as a sufficiently large distortion may change the pose

(a) (b) (c)

(d) (e) (f)

Fig. 12. Comparison with Dvorožňák et al. [2018]: the input sketch (a) was
used to inflate and deform the model of an elephant using our approach (b,
c) and also using the method of Dvorožňák et al. (e, f). Note, that our
approach inflates a complete 3D mesh, whereas the method of Dvorožňák
et al. produces only its bas-relief approximation as seen in the side view (f).
In addition, when positional constraints are added to the framework of
Dvorožňák et al., the resulting deformation does not preserve the original
shape well and produces unpleasant distortions (e). A more complicated
deformation such as (d) would be impossible to achieve using approach
of Dvorožňák et al.

in a valid way that conflicts with the original depth ordering. Thus,
a more flexible ordering, such as ordering related to the direction
of the surface normal, may be more appropriate. Similarly, the user
might intentionally deform individual model parts in such a way
that their depth ordering would change. In this case an automatic
mechanism could be developed to recognize such an event and
change the depth-ordering constraints accordingly (as done, e.g.,
in [McCann and Pollard 2009]). This extension is a natural direction
for future work.

Another common drawback of the single-view modeling scenario
is the limited control over the proportions in depth. Although in-
flation together with the depth-ordering constraints usually leads
to good depth proportions, sometimes additional control from a
different viewpoint would be beneficial (e.g., when trying to give
more depth to a nose by pulling the tip outward in z in a frontal
view of a face). As future work we envision an extension of our
framework that would enable merging input from multiple different
poses or viewpoints. This could be beneficial, for example, in the
context of modeling from traditional animation where a sequence
of hand-drawn frames could be used as a reference for the resulting
3D model.

Although our framework provides interactive response formodels
of moderate size, we would like to improve it further so that larger
meshes could also be edited at interactive rates. One possibility for
reducing computational overhead is to employ amulti-scale strategy,
solving on a low-resolution mesh, and then iteratively upsampling
and solving on higher resolutions until converging to the optimal
solution.

When texturing a shape with the reference imagery used to guide
sketching, we apply a very simple orthographic “x-ray” projection
scheme to assign texture coordinates. Texturing occluded regions
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could be improved with part-aware texture synthesis, but the gen-
eral task of inferring the appearance of hidden regions is an open
problem, currently an active topic of investigation in the deep learn-
ing community. In addition, image pixels around the silhouettes of
objects are stretched onto the surface and could be improved; simi-
larly, the surface itself could be refined to yield triangles with better
aspect ratios that would improve shading even without texture.

7 CONCLUSION
We have presented a joint approach to sketch-based modeling and
animation. Our technique enables quick 3D model inflation from
a sparse set of user-specified strokes, which can then be instantly
animated without needing to specify an explicit skeletal structure or
preparing a custom deformation rig. In contrast to previous works
that structured modeling and deformation as two separate tasks,
our method treats deformation as an integral part of the modeling
process. This unification allows the inflated model to better accom-
modate user-specified deformations. We evaluated our approach on
a variety of 3D models and compared the results with the current
state of the art. In contrast to previous approaches, comparably
complex 3D animations can be created using only a few strokes and
control points—and in a fraction of the time.
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