
Eurographics Symposium on Rendering 2008
Steve Marschner and Michael Wimmer
(Guest Editors)

Volume 27 (2008), Number 4

iCheat: A Representation for Artistic Control of Indirect
Cinematic Lighting

Juraj Obert1† Jaroslav Křivánek2 Fabio Pellacini3 Daniel Sýkora2 Sumanta Pattanaik1

1University of Central Florida
2Czech Technical University in Prague

3Dartmouth College

Abstract
Thanks to an increase in rendering efficiency, indirect illumination has recently begun to be integrated in cinematic
lighting design, an application where physical accuracy is less important than careful control of scene appear-
ance. This paper presents a comprehensive, efficient, and intuitive representation for artistic control of indirect
illumination. We encode user’s adjustments to indirect lighting as scale and offset coefficients of the transfer oper-
ator. We take advantage of the nature of indirect illumination and of the edits themselves to efficiently sample and
compress them. A major benefit of this sampled representation, compared to encoding adjustments as procedural
shaders, is the renderer-independence. This allowed us to easily implement several tools to produce our final im-
ages: an interactive relighting engine to view adjustments, a painting interface to define them, and a final renderer
to render high quality results. We demonstrate edits to scenes with diffuse and glossy surfaces and animation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Rendering, Global Illumination

1. Introduction

Lighting plays a crucial role in computer cinematogra-
phy, where it supports storytelling, enhances mood and di-
rects viewer attention [Alt95]. For this very reason, the
goal of cinematic lighting design is not achieving physi-
cal realism, but obtaining a carefully controlled illumina-
tion, however unphysical that may be. For direct illumi-
nation, a long tradition of lighting “cheats” has developed
over the years, e.g. arbitrary falloffs, fake blockers [Bar97],
and shadows from tweaked positions [PTG02], just to name
a few. To fit production shader-based workflow, these ad-
justments are encoded procedurally in complex light shaders
[Bar97, PVL∗05].

Indirect illumination did not play an important role in
cinematic lighting until recently, when an increase in its
efficiency has made it viable for cinematic scenes [TL04,
CFLB06]. To this day though, artistic control of indirect il-
lumination has been limited to simple adjustments and has

† e-mail: jobert@cs.ucf.edu

not reached the flexibility common to direct lighting. An ex-
ample of a common practice is the procedural modification
of surface and light shaders to change the color of the emit-
ted indirect light, as well as including and excluding objects
from indirect transport [TL04]. While this works well for
some adjustments, many effects cannot be expressed in sim-
ple manners just by altering shaders, in stark contrast with
direct illumination where modifying shader code is compre-
hensive and efficient. Furthermore, for an intuitive and ef-
ficient lighting design, artists seek direct control over the
interaction between materials, geometry and direct illumi-
nation, rather than their independent adjustments.

This paper introduces a representation for artistic control
of indirect illumination that is comprehensive, efficient, intu-
itive and not tailored to any software architecture or way of
computing global illumination (i.e. renderer-independent).
The key insight of our method is to encode indirect illumi-
nation “cheats” as scale and offset values of the transport
between points in the scene, and by keyframing them to sup-
port animation. Example edits made using our representation
are shown in Figure 1. Rather than focusing on supporting

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

J. Obert, J. Křivánek, F. Pellacini, D. Sýkora, S. Pattanaik / iCheat: A Representation for Artistic Control of Indirect Cinematic Lighting

Figure 1: Artistically modified indirect illumination. The left image shows original unmodified global illumination. In the middle
image we directed more indirect light at the character, bringing her into focus. In the right image we modified hue/saturation of
indirect lighting hitting the room and changed its directionality to make the character appear lit from her right-hand side.

specific effects, this representation is general in its support
of any adjustment since artists can arbitrarily alter the trans-
port between scene locations. To the best of our knowledge,
our work is the first to propose a general formulation that
encompasses any user edits in a simple framework.

To make this efficient, we take advantage of the sparse,
low-frequency nature of user edits to encode the adjustments
efficiently in an approximate form that makes offline ren-
dering practical while supporting interactive lighting design.
Furthermore, since artists control transport directly, the rep-
resentation is intuitive and naturally supports simple user
interfaces, such as painting-based metaphors. Finally, our
representation does not rely on procedurally altering shader
code, which is renderer specific, but is defined by sampling
a simple mathematical operator that can be implemented in
any renderer and user interface.

The benefit of having a renderer-independent representa-
tion has been clear during the development of this project,
where we have been able to integrate a real-time relight-
ing engine to preview our edits, a user interface to inter-
actively perform the adjustments by painting, and an of-
fline renderer for final high quality output. Furthermore, to
achieve highest efficiency our two renderers used different
algorithms for indirect lighting, making it simply impossible
to support procedural alterations. This simplicity is in con-
trast with the complexity of matching light shaders between
real-time and offline rendering in today’s procedural shader-
based pipelines, as demonstrated in the Lpics and Lightspeed
systems [PVL∗05, RKKS∗07].

The remainder of this paper introduces our adjustment
representation and demonstrates its benefits in the context
of cinematic lighting design. While any number of bounces
can be used to compute global illumination, the user only
controls the last one, since this was found to be more control-
lable for artists and sufficient for cinematic purposes [TL04].
In summary, this paper makes the following contributions:

• we introduce a general and intuitive representation for
artistic control of indirect illumination

• we demonstrate how arbitrary edits can be encoded in
such formulation, including support for animated scenes

• we take advantage of the sparse, low frequency nature of
user edits to encode them efficiently

• we derive a real-time rendering algorithm to preview ed-
its, and show a simple painting interface to control them

• we demonstrate the feasibility of inclusion in a production
pipeline by rendering all our final edits in an offline ren-
derer that supports indirect illumination in a way similar
to Renderman.

2. Related Work

Indirect illumination algorithms can provide remarkable re-
alism when rendering synthetic scenes. Reviewing the vari-
ety of methods available is beyond the scope of this paper
and we refer to reader to [DBB06] for a recent survey. In
most production renderers for cinematic lighting, it is com-
mon to use final gathering algorithms to compute irradiance
from scene surfaces [CFLB06]. While in most cases only
one bounce is considered [TL04,CFLB06], photon mapping
is available to artists that require the computation of multiple
indirect bounces [Jen01].

In today’s productions, two common approaches are used
to artistically control indirect illumination. First, by render-
ing the scene in layers, adjustments to final colors can be
performed with compositing tools. While these methods al-
low for global adjustment to be efficiently performed, adjust-
ments that only affect parts of the scenes remain too cum-
bersome with these methods. Our method supports any ad-
justment, whether local or global, in an intuitive and effi-
cient manner. The practice most closely related to our own
is the idea of controlling the computation of indirect illu-
mination directly by procedurally altering shader code, ex-
emplified in the production work in today’s computer gen-
erated movies [TL04, CFLB06]. Compared to this approach
our method has significant benefits in generality, intuitive-
ness and practicality that we have already discussed in the
introduction and we will further review in the following sec-
tions.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

J. Obert, J. Křivánek, F. Pellacini, D. Sýkora, S. Pattanaik / iCheat: A Representation for Artistic Control of Indirect Cinematic Lighting

One of the advantages of our representation is that it can
be easily supported in interactive relighting engines that sim-
plify lighting design by interactively displaying the adjusted
illumination during editing [PVL∗05, RKKS∗07]. Of the
various algorithms available, we have implemented a varia-
tion of [HPB06] since this algorithm was designed exactly to
support indirect illumination for cinematic scenes and since
our representation maps well to their relighting framework.
Section 5 will discuss our modifications.

While our representation does not impose a specific user
interface, one of its advantages is that is can support an
intuitive painting metaphor to directly control indirect ef-
fects. We used such a user interface to generate the ed-
its in this article and noticed that controlling complex ad-
justments is quite simple and efficient. The idea of us-
ing a painting metaphor is loosely related to goal-based
lighting design, where artists specify how the final scene
should look, often via painting, while an algorithm auto-
matically sets scene parameters to best fit artists require-
ments [KPC93, SDS∗93, OMIS06, PBMF07]. We departed
from this paradigm in our prototype since estimating param-
eters via optimization is quite slow in the case of indirect
illumination and may not converge to a reasonable solution.
The reader should notice, though, that our representation al-
lows artists to choose whichever user interface they feel most
comfortable with.

3. Representation

Our goal is to artistically adjust the indirect lighting for each
frame of a cinematic sequence. To allow for maximum con-
trol, we specify these adjustments independently for each
frame in the sequence. In the following paragraphs, we de-
scribe our method focusing on a single frame, and present its
extensions to animated scenes later.

For the fixed camera position of the rendered frame, the
indirect illumination B of a view point v can be written as

B(v) =
∫

g∈S
B(g)T (v,g)dg =

=
∫

g∈S
B(g)(ρ(v,g)G(v,g)V (v,g))dg

(1)

where g is a gather point, S the set of all positions on ob-
ject surfaces, T (v,g) is the transport operator, ρ(v,g) is the
BRDF evaluated between v and g, G(v,g) =−(Nv ·−→vg)(Ng ·−→vg)/|−→vg|2 is the geometric term and V the visibility. Note
that while ρ can be glossy in the last bounce, we assume that
indirect effects only depend on the diffuse radiance of all
other bounces as is common in cinematic lighting [TL04].
Current methods to control indirect illumination encode ad-
justments as procedural modifications of the various terms ρ,
G, V , B(g) [TL04]. While many effects can be represented
this way, adjustments that depend on the interaction between
these terms are cumbersome to capture and very hard to con-
trol for artists. Furthermore, since most of these adjustments

are represented as shaders, it is often close to impossible to
have multiple renderers compute the same image.

3.1. Edit Representation

We propose a representation where artists control indirect
illumination by directly altering the transport coefficients
T (v,g). Formally, we define the edited transport T ′ by scal-
ing and offsetting the original values

T ′(v,g) = s(v,g)T (v,g)+o(v,g) (2)

where s and o are scale and offset functions defined over the
cartesian product of the scene locations S× S. We support
color adjustments by storing scale/offsets for each channel
separately. This formulation can represent any edit an artist
might want to achieve since any value of the transport coef-
ficient can be obtained; we demonstrate several examples in
the next section. Furthermore, users can control the values
of the adjustments s and o directly and intuitively, without
having to manipulate the individual components separately.

We sample the functions s and o over a set of view and
gather samples vi and g j. In our implementation, we choose
n view samples as the points visible through all pixels, and m
gather samples uniformly distributed on the scene geometry
as in [HPB06]. In this formulation, the function s and o can
be thought of as n×m scale and offset matrices [Si j] and
[Oi j]

s(v,g)≈ [Si j] o(v,g)≈ [Oi j] (3)

We interpolate the matrix values to reconstruct scales and
offsets for arbitrary view/gather pairs, as described in Sec-
tion 5.

3.2. Efficient Encoding

High sampling density of scale and offset matrices is re-
quired to achieve high quality results. For our results, we
use 360K view samples and 64K gather samples, making
the direct storage of the matrices impractical. To make the
storage tractable, we project each row of the matrices in 1D
Haar wavelets and cull many of the less important wavelet
coefficients

Sw ≈WS Ow ≈WO (4)

where W is the wavelet transform matrix. Similarly to
prior work on cinematic relighting [HPB06], we impose the
wavelet basis by hierarchical clustering of the gather points
to ensure spatial coherence after wavelet projection. In our
experience, wavelets capture well the all-frequency structure
of user edits. In our prototype we use 100 wavelet coeffi-
cients per row.

Furthermore, many edits can be represented as constant
rows or columns of the matrices. These can be equivalently
expressed as adjustments to B(vi) and B(g j) respectively. To
take direct advantage of this, we additionally store scale and

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

J. Obert, J. Křivánek, F. Pellacini, D. Sýkora, S. Pattanaik / iCheat: A Representation for Artistic Control of Indirect Cinematic Lighting

(a) Original (b) 4D Hue/Sat/Value (c) 4D Quadratic falloff coefficient (d) 4D Painting selection

Figure 2: Different 4D edits were applied to original indirect illumination in image (a). We modified hue and saturation of
indirect lighting reflected off the blue wall towards the glossy cone and the diffuse box in image (b). In image (c), we decreased
the quadratic falloff coefficient from the glossy sphere towards the cone and the box. And finally, in image (d) we painted a 4D
selection to emphasize color bleeding on the floor.

offsets vectors {sv
i ,o

v
i } and {sg

j ,o
g
j} respectively for view

and gather samples to obtain

B′(vi) = sv
i B(vi)+ov

i B′(gi) = sg
i B(gi)+og

i (5)

3.3. Discussion

The reader may wonder why we represent edits as scale and
offset of the transport coefficients T , rather than simply stor-
ing the edited transport coefficients T ′. In this respect, our
representation has three main advantages. First, storing the
transfer coefficients directly for a high quality offline render-
ing would be impractical, while user edits are significantly
sparser and lower frequency. Second, offline and real-time
rendering algorithms have different quality/efficiency trade-
offs when computing indirect illumination; our sampled rep-
resentation can be integrated with these algorithms while
preserving such tradeoffs. Third, and possibly most impor-
tantly, it is more intuitive to modify scale/offsets than the
transport itself; for example to darken a wall, users can just
scale the radiance by a constant, while still maintaining these
beautiful realistic gradients so hard to achieve without indi-
rect illumination.

3.4. Animation

We support animation assuming artists follow the same
workflow typical of direct illumination, where adjustments
are defined for a few keyframes in the sequence and in-
terpolated in the remaining frames (see Figure 4). In our
framework, we interpolate matrices and vectors between
keyframes. This requires determining correspondence be-
tween matrix elements. We make this correspondence im-
plicit in gather samples by choosing the same parametric
surface location at each frame. View sample sets from the
keyframes are reprojected to the current frame, too. We com-
pute a matrix row for an arbitrary view point v in the current
frame by performing spatial interpolation for two surround-
ing keyframes using their reprojected view sample positions
(we take location and normal orientation into account when
performing the lookup), and then temporally interpolate the
two resulting rows. Thus, if a large area that was occluded
in the key frame becomes visible in the in-between frame,
artifacts may, indeed, appear.

4. Example Edits and Workflow

This section demonstrates the generality of our representa-
tion by performing several edits to a few scenes lit with in-
direct illumination. To generate all results in this paper, we
design the edits in an interactive relighting engine that sup-
ports our representation and then export them to an offline
renderer for high quality imagery. This workflow takes di-
rect advantage of the fact that our representation is renderer-
independent and can be easily supported using different al-
gorithms in any renderer, just like indirect illumination is.
Furthermore, the use of an interactive tool for previewing
lighting coupled with a high quality offline rendering for
final output is typical of current cinematic lighting work-
flow [PVL∗05, RKKS∗07], further proving the practicality
of our representation. We present implementation details in
the following section.

We control indirect illumination by first selecting view
and gather samples (4D selection), using a painting inter-
face, then applying arbitrary operations to the transport co-
efficients which are finally mapped to scale and offset values.
While our paper does not focus on a specific workflow, we
found this process intuitive and fast and thus we will present
it in this chapter as an example of possible integration with
cinematic production tools. Also, we remind the readers that
the edits shown are just examples of what our representa-
tion can achieve, but we expect different artists and cine-
matic “styles” to require a variety of different effects. Our
framework naturally supports any new effect, and has the
substantial benefit that new edits can be implemented sim-
ply by altering the scale/offset coefficients and do not re-
quire any other change in the renderer and production assets
(geometry, shaders, etc.).

4.1. Example Workflow

Indirect edits start by selecting view and gather samples us-
ing a painting interface. This essentially selects the block
of the transport matrix at the intersection between the rows
and columns corresponding to the selected view and gather
samples respectively. Our prototype provides both painting

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

J. Obert, J. Křivánek, F. Pellacini, D. Sýkora, S. Pattanaik / iCheat: A Representation for Artistic Control of Indirect Cinematic Lighting

Figure 3: Examples of edits on glossy surfaces. The left image shows original rendering with global illumination and the
remaining two images show our edits. In the middle image we made the cylinder above the staircase emit red indirect light,
changed indirect hue on the glossy staircase piece and on the glossy statue torso. In the right image, we added a more bluish
tone by reflecting more indirect light off the ceiling towards the floor and the wall.

and per-object selection mechanisms and supports smooth,
non-binary selections. Arbitrary modifications are then ap-
plied to this block by projecting user edits to scale and offset
coefficients and compressing them in the wavelet domain.

In our examples, we fixed the main camera for simplic-
ity of explanation. However, our example workflow is more
similar to a lighting design system in production. In the real-
time renderer, the main camera is fixed (in a way similar
to [PVL∗05]) and other viewports are provided for the user
to navigate around the scene and work with surfaces not vis-
ible from the main camera.

4.2. Example edits

Figure 2 shows three samples edits, where we manipu-
late hue/saturation/value of reflected indirect light in (b),
quadratic falloff coefficient in (c) and directly paint addi-
tive coefficients in (d). In the first example, we selected the
blue wall as the casting object, the box and the cone as re-
ceiving objects and increased saturation. Notice that glossy
objects are handled as easily as diffuse in this representation
(see Figure 3 for more examples of glossy edits). In the sec-
ond example, we changed the quadratic falloff coefficient of
light reflected off the sphere and thus made more light ar-
rive at the box and the cone. The third example is similar to
the first, but uses painted selection (the floor) instead of per-
object selection. Note that these are just a few example of
possible edits. We also have successfully experimented with
removing indirect shadows, or selectively increasing object
albedos for indirect lighting, etc.

5. Implementation

We have implemented our representation in two applica-
tions: an interactive relighting engine to preview the edits
coupled with a painting interface to perform them, and an
offline renderer to compute final frames. For each, we have
adapted a known algorithm to support our editing represen-
tation. All results in this paper were created by concurrent
use of these two tools. Having a consistent representation for

lighting cheats made it possible to have them interact effi-
ciently. This section describes implementation details of the
interactive relighting engine and the offline renderer. Once
again, we remind the reader that these are just examples of
how easy it is to adapt rendering algorithms to support our
representation; we expect others to easily include our edits
in their preferred systems.

5.1. Interactive Relighting Engine

Our interactive relighting algorithm is based on the direct-
to-indirect transfer approach of [HPB06]. In their algo-
rithm a transport matrix T is precomputed between a set
of view samples vi, chosen as the pixel centers, and a set
of gather samples g j, uniformly sampled in the scene. The
precomputed matrix is compressed by projecting each row
in wavelet space and culling small coefficients to obtain an
approximate sparse matrix T w. For each change in the light-
ing, the direct illumination of gather samples is computed
and multiplied column-wise by the sparse transfer matrix. In
our implementation, we also encode each row sparsely, but
use row-wise instead of column-wise multiplication. To sup-
port indirect illumination cheats, scale and offset matrices
are projected in the same wavelet basis as the transport oper-
ator and lossily compressed. To support animation, we sim-
ply keep in memory the transfer matrix and the scale/offset
coefficients for each keyframe.

5.2. Edit Updates

As described above, the interactive renderer is unaware of
how scale and offset coefficients are modified. During an
editing session, it is the responsibility of the user inter-
face code to update these coefficients interactively, as would
normally happen with direct illumination light parameters.
Once again, our simple representation makes this decoupling
possible. We compute scale/offset coefficients every time the
user commits an edit, every time direct lighting changes and
every time a non-linear edit is applied (such as gamma edit,
which is non-linear with respect to lighting values).

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

J. Obert, J. Křivánek, F. Pellacini, D. Sýkora, S. Pattanaik / iCheat: A Representation for Artistic Control of Indirect Cinematic Lighting

Figure 4: Keyframed edits. Original (first row) and modified (second row) frames from an animated sequence are shown.
Frames (e) and (h) were selected as keyframes and lighting was designed for them. Frame (e) was left intact and in frame
(h), indirect lighting arriving at the character, laundry basket and the couch was modified. Edits in images (f) and (g) were
interpolated and show smooth transition of the edits between two keyframes.

Sample edits in Figure 2 are implemented as follows. In
Figure 2(c) we show editing of the quadratic falloff coef-
ficient. This is an example of a geometry edit, i.e. an edit
that alters the geometry term of the rendering equation. Our
implementation of this edit consists of unrolling the ma-
trix row from the wavelet space, then multiplication of ma-
trix elements by a constant and finally projection back into
wavelets. Then we divide the original and new matrix ele-
ments to obtain scales and offsets.

Using a row-based encoding lets us access the matrix
quickly since we only need rows corresponding to edited
view samples. To gain further speed, we adaptively subsam-
ple the rows using irradiance caching [WRC88]. Wavelet
triple product [NRH04] can further optimize the updates and
is left for future work.

Figure 2(b) demonstrates editing of hue/saturation/value
of indirect lighting computed between two sets of points.
This is a non-geometry edit, as it doesn’t require modifica-
tion of the geometry term. In our implementation we first
compute light transport between two sets of points using the
underlying rendering algorithm [HPB06]. We store this in-
formation as a 2D texture (tex1). Then, we execute the user
edits (i.e. change HSV in this example) and store the result
as another texture (tex2). To obtain scales and offsets, we
divide tex2 by tex1. If division by zero occurs, offsets
are set to values from tex2 and scales are set to zero. Oth-
erwise, scales are set to the result of the division and offsets
are set to zero. Implementation of the edits in Figure 2(d) is
the same, the images only differ in the selection mechanism
used (per-object vs. painting).

It is important to realize that even though multiple edits
can be applied over the same sets of gather/view points, the
wavelet compression doesn’t cause any major loss in quality

for two reasons. First, we keep edits uncompressed while the
user works with them and only project them into wavelets
when they have been committed (i.e. finalized). Second, we
only store modifications to the matrix, which are inherently
of very low frequencies and therefore far less susceptible to
cause artifacts.

5.3. Offline Renderer

We compute high quality images using an offline renderer
based on final gathering accelerated by irradiance and radi-
ance caching [WRC88,KGPB05]. Multiple bounces are han-
dled by using photon mapping. Our algorithm for indirect
lighting is the same as used in most Renderman implementa-
tions, showing the feasibility of a deployment in production.
While our realtime implementation uses point sampling, we
interpolate the matrix rows for our final rendering. For pri-
mary rays hitting a surface at view point v, we locate the
three nearest view samples (we use a kd-tree to locate near-
est view and gather samples) and interpolate the wavelet co-
efficients in the corresponding matrix rows. The interpolated
coefficients are then decoded from the wavelet domain and
retained for fast lookup in final gathering.

For each gather point, g, hit by a gather ray emitted from v,
we let the renderer compute illumination as usual (e.g. by a
photon map lookup or by evaluating direct illumination at
g) and subsequently alter the computed illumination by the
offset and scale factor looked up from the currently decoded
matrix row. To index into the row, we simply locate the near-
est gather sample to g. Nearest neighbor filtering is sufficient
here, since the illumination is averaged in final gathering. Ir-
radiance caching helps reduce the overhead since the matrix
row interpolation and wavelet decoding is only performed
when a new cache record is added. Animation is performed
temporal edit interpolation as described in Section 3.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

J. Obert, J. Křivánek, F. Pellacini, D. Sýkora, S. Pattanaik / iCheat: A Representation for Artistic Control of Indirect Cinematic Lighting

Scene Edits size TiCheat Tnormal
Fig. 1 7MB 4:20 4:00
Fig. 2 7MB 0:55 0:40
Fig. 3 7MB / 9MB 2:40 2:30

Figure 5: Size of the edits matrices and final renderer per-
formance (in minutes:seconds) for the example scenes in the
paper. TiCheat gives the render time with the edits applied,
Tnormal without.

6. Results

The performance results reported in this section were mea-
sured on a PC with Intel Core Duo 6850 processor, 4GB
RAM, GeForce 8800 Ultra GPU running Windows XP. We
rendered all our images at 640×480 resolution, with up to
36 samples per pixel in the high quality renderer.

The real-time renderer performs at frame rates around 150
FPS for 300k view samples, 64k gather samples, and image
resolution of 640×480. The matrix updates are performed
at 10 frames per second, a speed still largely sufficient for
comfortable work.

The size of edit representation depends on the number of
affected view samples and the number of coefficients stored
per matrix row (which in turn depends on the nature of the
edit). The maximum of 100 coefficients per row was suffi-
cient for all the example edits shown in the paper. Figure 5
summarizes the matrix sizes for various scenes in this paper.

Overhead implied by applying edits in final rendering is,
for the most part, due to interpolating and decoding ma-
trix rows and locating the nearest gather sample for each fi-
nal gather ray. As such, it is proportional to the size of the
edit matrices. In our tests, the overhead never exceeded one
minute for a frame of 640×480 pixels. The rendering times
are summarized in Figure 5.

7. Conclusion and Future Work

We have presented a representation for artistic control of
indirect lighting, with application to computer cinematog-
raphy. Rather than representing edits as procedural shader
modifications, we numerically sample the edits using scale
and offset coefficients and take advantage of their nature to
efficiently compress and render the adjustments. This rep-
resentation is general, easy to manipulate, and renderer-
independent, allowing simple and effective workflow in pro-
duction environments.

In the future, we are interested in investigating representa-
tions of this nature to support adjustments of other aspects of
cinematic appearance design, such as materials, subsurface
scattering, volumetric effects and tone manipulations.

Acknowledgments
This work has been supported by University of Central
Florida I2Lab Fellowship, Florida High-Tech Corridor Re-

search Funding and Ministry of Education Youth and Sports
of the Czech Republic under the research program LC-
06008, "Center for Computer Graphics". Fabio Pellacini
was partly supported by NSF (CNS-070820, CCF-0746117).
Many thanks to Vlasta Havran for the Golem ray tracer and
to Universal Production Partners (UPP) for the Orion scene.

References
[Alt95] ALTON J.: Painting with Light. University of California

Press, 1995.
[Bar97] BARZEL R.: Lighting controls for computer cinematog-

raphy. Journal of Graphics Tools 2, 1 (1997), 1–20.
[CFLB06] CHRISTENSEN P., FONG J., LAUR D., BATALI D.:

Ray tracing for the movie cars. In Proc. of IEEE Symposium on
Interactive Ray Tracing (2006), pp. 1–6.

[DBB06] DUTRÉ P., BALA K., BEKAERT P.: Advanced Global
Illumination, 2nd ed. A K Peters Ltd., 2006.

[HPB06] HAŠAN M., PELLACINI F., BALA K.: Direct-to-
indirect transfer for cinematic relighting. ACM Trans. Graph.
(Proc. SIGGRAPH) 25, 3 (2006), 1089–1097.

[Jen01] JENSEN H. W.: Realistic Image Synthesis Using Photon
Mapping. A K Peters Ltd., 2001.

[KGPB05] KŘIVÁNEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. IEEE Transactions on Visualization and Computer
Graphics 11, 5 (September/October 2005).

[KPC93] KAWAI J. K., PAINTER J. S., COHEN M. F.: Radiopti-
mization: Goal based rendering. In SIGGRAPH’93 Proceedings
(1993), pp. 147–154.

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple
product wavelet integrals for all-frequency relighting. ACM
Trans. Graph. (Proc. SIGGRAPH) 23, 3 (2004), 477–487.

[OMIS06] OKABE M., MATSUSHITA Y., IGARASHI T., SHUM

H.-Y.: Illumination Brush: Interactive Design of Image-based
Lighting. Tech. Rep. MSR-TR-2006-112, Microsoft Research,
2006.

[PBMF07] PELLACINI F., BATTAGLIA F., MORLEY R. K.,
FINKELSTEIN A.: Lighting with paint. ACM Trans. Graph.
(Proc. SIGGRAPH) 26, 2 (2007).

[PTG02] PELLACINI F., TOLE P., GREENBERG D. P.: A user
interface for interactive cinematic shadow design. ACM Trans.
Graph. (Proc. SIGGRAPH) 21, 3 (2002), 563–566.

[PVL∗05] PELLACINI F., VIDIMČE K., LEFOHN A., MOHR A.,
LEONE M., WARREN J.: Lpics: A hybrid hardware-accelerated
relighting engine for computer cinematography. ACM Trans.
Graph. (Proc. SIGGRAPH) 24, 3 (2005), 464–470.

[RKKS∗07] RAGAN-KELLEY J., KILPATRICK C., SMITH

B. W., EPPS D., GREEN P., HERY C., DURAND F.: The light-
speed automatic interactive lighting preview system. ACM Trans.
Graph. (Proc. SIGGRAPH) 26, 3 (2007).

[SDS∗93] SCHOENEMAN C., DORSEY J., SMITS B., ARVO J.,
GREENBERG D.: Painting with light. In SIGGRAPH’93 Pro-
ceedings (1993), pp. 143–146.

[TL04] TABELLION E., LAMORLETTE A.: An approximate
global illumination system for computer generated films. ACM
Trans. Graph. (Proc. SIGGRAPH) 23, 3 (2004), 469–476.

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A
ray tracing solution for diffuse interreflection. In SIGGRAPH’88
Proceedings (1988), pp. 85–92.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

